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EXECUTIVE SUMMARY

This report summarizes a theoretical study of the behavior
of surface cracks in the webs of railroad rails. The study was
motivated by recent reports of rail failures caused by web cracks
which had apparently grown at unusually rapid rates. The rapid
growth had possibly been caused by the presence in the rail of
residual stress from a roller-straightening process. (Rails were
generally not roller straightened in older U.S. production, which
was in service when the present rail inspection intervals were
established.)

The objective of the present study was to make comparative
estimates of web surface crack growth rates with and without
residual stress present. A linear elastic fracture mechanics
(LEFM) model of a semi-elliptical surface crack was used to make
the comparison. The semi-elliptical surface crack represents
typical characteristics of initial damage which might be caused
on rail webs by excessively severe brand stamping at the mill or
by accidental blows from a rail spike maul during installation.
The LEFM type of model has been successfully applied to other
kinds of rail defects, such as transverse cracks in the head.

In the present case, the LEFM model was used to estimate the
life for an initial surface crack to enlarge until its deepest
point would penetrate through the web thickness. The LEFM model
estimates were found to exceed the rail service life by a factor
of at least 10 to 20, even when a large value was assumed for
roller-straightening residual stress. Accordingly, the LEFM
model for this type of rail defect was judged to be invalid.

An alternative model based on three-dimensional finite
element analysis and the strain energy density formulation of
fracture mechanics was also applied to the problem. This model
also starts with a semi-elliptical surface crack, but the strain
energy density formulation allows crack-shape changes to be
computed during the growth calculation. Only the case of rail
with no residual stress could be analyzed within the funds
available for the study. The results of these calculations
showed that the most rapid growth would be expected to occur
along the rail web surface (rather than through the thickness as
assumed for the LEFM model), and the estimated lifetimes were of
the order of one half a typical rail service life or less.

ix/x












1. INTRODUCTION

The Transportation Systems Center has supported the Federal
Railroad Administration in its track safety research program for
the past several years. Among the projects in the track safety
program is one concerning rail integrity. The objective of the
rail integrity project is to identify practical approaches to
the reduction of derailments caused by rail failures. Various
types of defects, if not detected by inspection, can cause rail
failures. A review on the objectives and investigations of the
rail integrity project can be found in Reference 1.

Within the past two years, some unexplained incidents of
split web failures have occurred in the Northeast Corridor track.
These failures pose safety risks due to the high speed of train
operations in the corridor and due to the high volume of
passenger traffic on this line.

The rail failures originate as semi-elliptical surface
fatigue cracks on either the field side or gage side of the rail.
Figure 1 illustrates the typical crack location and orientation.
Two possible sources of cracking have been identified: (1)
production stamp markings (where such markings are made more
severely than normal);: and (2) damage induced when a rail
web is accidentally struck by a spike maul. The initial crack
appears to propagate through the web thickness (i.e., field to
gage side or vice versa) before transition to a split web through
crack. Under normal circumstances, a flaw of this type grows
slowly enough so that it can be detected while still a surface
crack by ultrasonic rail testing performed in accordance with
existing inspection schedules. Detection in the surface crack
regime is essential because propagation to failure can be
extremely rapid once the through crack regime is entered.

In the present case, however, it appears that the surface
crack regime is also subject to accelerated propagation, and the
flaws are thus able to reach the through crack stage ahead of the
rail test. A possible reason for the anomalous behavior is that
the rails in the present case are roller-straightened, whereas
previous experience of successful web surface crack detection has
been based on nonroller-straightened rails. The roller-.
straightening process is known to create residual stresses in
rails.

In this study, the sensitivity of surface crack growth life
to the combination of web residual stress and live load stresses
is investigated. The purpose of this report is to present some
results on this sensitivity study. Two approaches are undertaken
in this investigation. The first approach uses an engineering






FIGURE 1. CRACK LOCATION AND ORIENTATION






fracture mechanics model. The web crack is modeled as a
semi-elliptical crack in a semi-infinite medium. The stress
intensity factor for this type of crack can be found in handbook
(for example, Reference 2). With the aid of an approprlate
choice of a crack growth relatlon, the crack size in terms of the
ratio of the length of the semi-minor axis of the semi-elliptical
crack to rail web thickness versus life in terms of million gross
tons can be calculated. This approach has also been used in
modeling the growth of detail fractures in the head of rail [3].
The second approach uses the strain energy density criterion to
model the surface crack as a crack which can grow in a
non-self-similar manner. Initially, the crack is assumed as a
semi- elllptlcal surface crack. As the crack grows, the amount of
extension is determined by the energy density criterion. This
approach has also been used in previous studies of other rail
defects such as the detail fracture and the bolt hole crack
[4,5].






2. ENGINEERING FRACTURE MECHANICS MODEL

An engineering fracture mechanics model is presented in this
section. The model is comprised of two major parts: (1)
one-dimensional stress analysis and (2) crack growth analysis
based on conventional linear elastic fracture mechanics. In
particular, the concept of stress intensity factor is used for
subcritical fatigue crack growth. The model considers only Mode
I crack growth. Loading is characterized by a load spectrum
which is translated into stress data. The material of the rail
is characterized by crack growth rate constants.

A simplified load spectrum based on an isolated 33-kip wheel
load is used for the present study. Dynamic effects are
considered by multiplying the static wheel load by factors. A
load schedule for one train is given in Table 1. It can be seen
that the loads given in the table correspond to 13,392 gross tons
for one train.* (It should be noted that 416 static wheel loads
with an average value of 33 kips actually correspond to 13,728
gross tons. In the subseguent calculations, the value of 13,392
gross tons was used. Therefore, the predicted lives will be 3
percent higher than if the static gross tonnage had been used.)
The resulting dynamic histogram accounts only for vertical wheel
loads, however. Lateral loading is assumed to be a function of
the track curvature. That is, wheel loads on tangent tracks are
subjected to relatively low lateral loads compared to curved
tracks. Also, lateral wheel loads are assumed to be a fraction
of the applied vertical wheel load. The ratio of lateral-to-
vertical wheel load or L/V is assumed to be 0.05 for tangent
track and to vary between 0.15 and 0.30 for curved tracks.

From the simplified load spectrum, the vertical stress
component associated with each wheel load is calculated as a
function of the longitudinal distance along the track. The
minimum and maximum stresses can then be determined from the
stress distribution. These min/max pairs are then used to define
mean and alternating stress components which are required for the
calculation of crack growth life. It is assumed that each wheel
load creates one pair of minimum and maximum stresses. 1In other
words, each wheel load is assumed to create one stress cycle.

*The figure given is actually a summation of the assumed dynamic
loads. For practical purposes, the gross tonnage would normally
be based on static load (i.e., 13,728 tons in the present case,
based on 33 tons per axle). However, the difference in the
present case is only 3 percent, and the calculated results have
not been adjusted.






TABLE 1. LOAD SCHEDULE FOR ONE TRAIN

Group Number of loads Dynamic Value of Wheel Load
(kips)

1 96 26

2 208 33

3 112 36

Total 416 -

2.1 STRESS ANALYSIS

The stresses in rails have been determined in previous
studies of rail defects (References 3 and 8, for example) by
using analyses developed by Timoshenko and Langer [6]. However,
these analyses consider only the longitudinal component of
stress. In the present model, the relevant component of stress
which must be calculated is the vertical stress since only the
opening mode of crack propagation is assumed. Therefore, other
analyses must be developed in order to determine the vertical
stress in the rail web.

There are three sources from which the vertical stress
component is comprised: (1) due to vertical load, (2) due to
bending of the web by a moment resulting from eccentric vertical
load and/or lateral load, and (3) residual stress. The total
vertical stress at a given point in the web cross section is
assumed to be the superposition of these three different effects.

The component due to vertical load is calculated using the
beam on elastic foundation theory [7]. This component has a
uniform distribution across the web thickness and is roughly
estimated as the product of rail deflection and foundation
modulus divided by the web thickness. A more accurate
determination of this stress component can be made by modeling
the rail web as a long plate with finite thickness and height,
(see Figure 2). The plate is loaded on the bottom by a vertical
stress distribution due to the rail foundation modulus. This
stress distribution can be calculated for a single concentrated
vertical load, P, applied at the origin by the following:

0z (x,-¢)= ;—?;1 e.A]'x ( cos Ayx + sin A;x ) (1)
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(a) RAIL AS A BEAM ON ELASTIC FOUNDATION

(b) RAIL WEB LOADED BY STRESS DISTRIBUTION

FIGURE 2. RAIL WEB VERTICAL STRESS MODEL






In this equation, E is Young's modulus, I is the area
moment of inertia for vertical bending, k is the rail vertical
foundation modulus, t,; is the thickness of the web, and c is
half the height of the rail web or hy/;. Similarly, the top of
the plate is loaded by a vertical stress distribution created by
the so-called head on web effect:

Ozz2 (X, $+c) = ;{lwz e-'\zx ( cos Axx + sin Apx ) (2a)
4= _Kwv  apd Ky, = Slw 2b
A2 TEL,,, °*d kw =, (2b)

In this case, kyy is the effective vertical web modulus
defined by Timoshenko and Langer [6] and I,yh 1s the area
moment of inertia for vertical bending of %Ke rail head only.
Thus, the problem is reduced to one that can be easily solved by
applying elasticity methods [8]. A closed form solution for a
plate of length L is obtained by using Fourier series and is
given by:

el ac cosh ac + sinh ac)] cosh az inh inh
Uzz(l) (X,Z) =mz=:° = (Am+Bm) ([ = = +A1 ] - oy sin Zi LB ) cos aX

+ § ( Am - Bm) ( [ac sinh ac +zosh ac] sinh az o3 cosh ac cosh oz ) cof ax
m=0 2 2

A, = sinh 2ac + 2ac, A, = sinh 2ac - 2ac , and @ = mx/ L. 3)

The Fourier coefficients, Ap and Bp are determined from the
applied vertical stress distributions on the lower and upper
edges of the plate given in equations (1) and (2), respectively.
However, these stress distributions must be expressed in terms of
an infinite Fourier series. The derivation of the Fourier
coefficients required for the calculation of this component of
vertical stress is presented in Appendix A. For computational
purposes, the series was truncated at 250 terms. The variation
of this component of the vertical stress as given in equation (3)
is shown in Figure 3 for a single concentrated load. It can be
seen from this figure that at the center of the plate the stress
distribution varies such that the sign of the stress changes at
some distance from the applied load. This is called the reversed
bending phenomenon. The ratio of the maximum tensile stress to
the maximum compressive stress at the center of the plate is
0.043. Note that this value, however, depends on the location of
z (see Figure 3). For the web crack problem, the location of
interest is at the center of the web.

7
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The effect of eccentric vertical wheel load and/or lateral
load is also handled through elasticity methods. The offset
vertical load and lateral load combination is resolved into a
statically equivalent moment applied at the bottom of the rail
head or the top of the web of the rail. Referring to Figure 4,
this moment is calculated as:

M=V(e--§1) (4)

where V is the applied vertical load, L is the applied lateral
load, e is the vertical eccentricity and f* is the distance
between the load application point and the top of the rail web.
The rail web is then modeled as an infinitely long cantilever
plate subjected to a concentrated moment at the origin.

Jaramillo presented a closed form solution to the problem of an
infinite cantilever plate subjected to a transverse concentrated
load [9]. The solution was given in terms of improper integrals
for deflections and moments which were then transformed into
series form by the use of contour integration and residue
calculus. A solution to the problem of an infinite plate loaded
by a concentrated moment can be obtained in a similar manner by
merely altering the relevant boundary conditions. Figure 5 shows
some results of such an analysis. In this figure, the variation
of moment along the longitudinal length of the plate is shown at
different depths of the plate It is interesting to see that the
moment does not reverse in sign at any distance from the point of
application. The derivation of the expressions which have been
altered from Reference 9 is given in Appendix B. Once the moment
M, at a particular location is known, the vertical stress
component due to offset vertical load and lateral load is
calculated from small deflection plate theory. Thus, this
component of the vertical stress varies linearly across the web
thickness:

12 M
Oz (2) = _ta'L! (%)

The third source of vertical stress is the residual stress.
As mentioned previously, residual stresses can develop in
roller-straightened rails during the manufacturing process.
Experlmental measurements have shown that there exists a
compressive vertical stress on the web surface. Equilibrium
considerations imply that a distribution of vertical residual
stress must exist through the web thickness such that the surface
compression is balanced by internal tension. It is believed that
the surface compression extends inward from each surface by about
10 percent of the web thickness. Thus, a vertical residual
stress distribution such as that shown in Figure 6 can be
assumed. A web surface crack that is extended into the residual

9






v] WV =0.05fortangent track e =W/4 for tangent track
LV =0.15 to 0.3 for curved track € =W/8 for curved track

L v’A

7l

PR .
<

. Uniform stress caused by V
f Bending stress caused byM

N
+77 +

W —le 02$
h
y W y
GAGE FIELD
SIDE SIDE

FIGURE 4. RAIL LOADED BY ECCENTRIC VERTICAL AND LATERAL
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tension region can grow under live traffic loads. It is
important to note that the contribution of the residual stress to
the calculation of the fatigue life in this model is merely to
change the mean stress.

The cyclic variation of stress is assumed to be created from
a single wheel load. That is, two pairs of minimum and maximum
stresses result from the application of a single wheel load which
can be seen in Figure 7. The magnitude of the two maximum
stresses is assumed to be 0.043 times the value of the magnitude
of the minimum stress beneath the applied wheel load. This
factor is derived from the reversed bending due to the beam on
elastic foundation formula for deflections. Also, no truncation
of the stress cycle for compressive stress is assumed. This
stress cycle, however, is most likely to be a more severe case
than is actually experienced. The variation of the rail
deflection due to a train consist type of loading is shown in
Figure 8. The significance of this figure becomes evident when
it is recalled that one of the components of vertical stress is
proportional to the rail deflection. It can be seen that the
actual vertical stress history is relatively complex compared to
a single wheel load model. Therefore, in order to simplify the
analysis a single wheel load is used to model the stress cycle.

2.2 CRACK GROWTH ANALYSIS

The surface crack is modeled as a semi-elliptical crack with
a known aspect ratio (see Figure 9). 1In the present study, the
aspect ratio a/2c = 0.4 is assumed. Only Mode I or the opening
mode of crack growth is assumed. 1In order to make the analysis
tractable the aspect ratio in the engineering model is assumed to
be constant as the crack propagates. By invoking this assumption
of constant aspect ratio, the surface crack is assumed to grow in
a self-similar manner. That is, the surface crack is initially
semi-elliptical in shape and remains in this same shape
throughout the life of the crack. The stress intensity factor
for a semi-elliptical crack is given by Reference 10 as:

K;=112§ J7a (6)
r/2

® = I [1-k2sin2 0]"2 do
1]

2 2
= 1-
: &
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Corrections to the stress intensity factor due to the
presence of free boundaries and to stress gradient are given for
elliptically shaped cracks in Reference 11. Free surface
correction factors for varying crack depths for the given aspect
ratio are given in Figure 10. For fatigue loading, a crack
growth law of the following form is used in the model for the
semi-elliptical surface crack:

_C(aK ) 7
=TT (7

1

where C is the crack growth rate constant, p and g are crack
growth exponents, and R is the stress ratio defined as minimum
stress to maximum stress in a given stress cycle. This crack
growth relation was also used in the study of detail fracture in
the rail head in Reference 3. Note that by including the stress
ratio, R, the effect of mean stress is included. In the
original form of the power law equation presented by Paris, this
effect was not included [12]. Also note that three parameters in
equation (7) must be determined experimentally. These parameters
have been reported in Reference 13 as follows: C = 1 x 10711 in.
cyc.” ! (ksi/in)"P, p = 4, and g = 1.63.

2.3 RESULTS

A set of parameters was chosen to represent the possible
track conditions on the Northeast Corridor. A surface crack on
the field side of a 132RE rail was assumed to have initiated at
the neutral axis of the rail. The following parameters were
varied in the model (baseline values are also listed):

1) vertical foundation modulus (2500 psi),
2) track curvature in terms of L/V (0.05),
3) magnitude of residual stress (0 ksi).

A sensitivity study was performed by varying each of these
parameters one at a time while the others were held at their
respective baseline values. The material properties of the rail
were characterized by the crack growth constants given in
Reference 13, as mentioned previously. These values were not
changed during the sensitivity study. Furthermore, no threshold
value for the stress intensity factor was assumed. The results
are presented in the form of plots showing the crack size in
terms of the ratio of the semi-minor axis length to web thickness
versus the number of cycles to failure. In general, for rail
defects the number of cycles to failure is translated into an
equivalent value for tonnage carried over the track in terms of
million gross tons.
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The value of the vertical foundation modulus was varied from
the baseline value to 10,000 psi which represents concrete tie
track. The engineering fracture mechanics model showed that the
vertical foundation modulus does not affect the fatigue life of
the surface crack. The model assumed that one of the
contributors to the vertical stress was a uniform stress caused
by the stress distribution from the vertical track and head on
web moduli. The head on web effect is a highly localized effect
which dominates the contribution to this component of the
vertical stress as opposed to the dispersed effect of the track
foundation modulus.

The effect of residual stress is shown in Figure 11 for
tangent track loading and in Figure 12 for curved loading (i.e.,
L/V =0.30). In the tangent case, when there is no residual
stress the crack growth rate is extremely slow. Tables 2 and 3
list the values of fatigue crack life for different increments of
crack size and maximum residual stress. In the curved track case
with no residual stress this model predicts that a web surface
crack will not grow. The most conspicuous result is that the
effect of increasing the magnitude of the residual stress is to
increase the crack growth rate. It is also interesting to note
that a reduction in the crack growth rate is apparent as the
crack approaches the center of the web. This may be due to
gradients in the distribution of the vertical stress through the
thickness which, in turn, reduces the effective stress intensity
factor.

In general, the results of the engineering fracture
mechanics model show that the crack growth rates are relatively
slow (as compared to the detail fracture, for example). This is
consistent with the fact that the occurrence of surface cracks on
the rail web are not widespread. However, it must be noted that
the assumptions concerning the stress analysis were made to yield
conservative predictions for fatigue life.
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TABLE 2. FATIGUE CRACK GROWTH LIVES FOR TANGENT
TRACK LOADING (in MGT)

Crack size Oy = 0 ksi Oy = 15 ksi oy = 20 ksi
0.10 - 0.20 7039 1850 1196
0.20 - 0.30 16,518 3192 2102
0.30 - 0.40 36,013 4582 2913
0.40 - 0.50 373,370 7442 4214
0.50 - 0.60 ] 19,066 6276
0.60 - 0.70 © 19,130 6308

TABLE 3. FATIGUE CRACK GROWTH LIVES FOR CURVED TRACK
LOADING (IN MGT)

Crack size gy = 0 ksi 0y = 15 ksi Oy = 20 ksi
0.10 - 0.20 o 2751 1200
0.20 - 0.30 4336 1932
0.30 - 0.40 6735 3104
0.40 - 0.50 30,509 18,560
0.50 - 0.60 42,133 20,622
0.60 - 0.70 44,434 21,839
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3. STRAIN ENERGY DENSITY MODEL

A second approach to the investigation of the growth life of
a surface crack in the rail web was undertaken using the strain
energy density criterion. 1In this model, mixed mode crack
propagation is assumed, namely, Mode I and Mode III are assumed.
Mode I results from the vertical wheel loading while Mode III
results from the applied lateral load. Although it is not
assumed in this investigation, Mode II can also be included. By
excluding Mode II, the crack propagates in the same plane. If
all three modes are included in a crack growth model, a true
three-dimensional crack problem must be solved since the surface
crack would no longer propagate in one plane. In order to
simplify the analyses, the crack is assumed to grow in the same
plane which is the implied assumption used in the engineering
model. Another feature in the strain energy density (SED) model
which differs from the engineering model is that the surface
crack is allowed to grow in a non-self-similar manner. The
linear fracture mechanics approach, which relied on the concept
of the critical stress intensity factor, assumed that the crack
grows in a self-similar fashion. In the strain energy density
model, the surface crack has an original shape which is assumed
to be semi-elliptical. However, as the crack propagates, the
amount of crack extension is determined by the strain energy
density criterion, which may not be constant along the boundary
of the crack. The strain energy density criterion assumes that
the material elements near the crack border can fail by energy
release when a critical amount of stored energy per unit volume
is reached. Figure 13a shows a schematic of the strain energy
density function as a function of the radial distance from the
crack border for different points on the crack front. The strain
energy density function decays rapidly in the form of 1/r as the
radial distance increases. The locations at which dW/dV reaches
(dW/dV) . determine the shape of the crack profile for a given
number of load cycles. For fatigue loading, there are two such
curves for the strain energy density function at each location
along the crack front, see Figure 13b. These two curves
represent the maximum and minimum states which may correspond to
the maximum and minimum stress states. Energy dissipated by
plastic deformation occurs prior to breaking of the elements
along the prospective path of macrocrack growth and, therefore,
is not available at the time of macrocrack surface creation. The
path dependent nature of crack growth in materials that deform
beyond the yield point is described in Reference 14.

3.1 STRAIN ENERGY DENSITY CRITERION

The number of cycles required for an initially
semi-elliptical shaped crack to grow into a non-self-similar

23
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shape and become unstable will be estimated from the strain
energy density criterion. Extending the work to three
dimensions, a critical value of the strain energy density
function (dW/dV). is assumed to govern the failure of material
elements near the crack border in Figure 14 such that:

A51 — AS - Sn - - ASC
E_Arz_...m_constant_m (8)

where AS5 = (Sqpax = Spin) 3=1,2,...n and S is the strain energy
density factor. Referring to Figure 13b, AS is the rectangular
area with sides (dW/dV). and Ar which represents the segment of
crack growth as the load is cycled from the minimum to the
maximum state. The quotient AS/Ar is taken to be a constant
along the fatigue crack front until AS./Ar. is reached, at which
point global instability prevails. This constant value can be
evaluated from experimentally measured cyclic stress and strain
curves since:

i

dW _ A
v =4 ®)

In the present study, the critical value for the strain
energy density is (dW/dV). = 1358 psi. This value for the
strain energy density represents a fraction (one tenth) of the
total area beneath the true stress versus true strain curve. The
critical value of the strain energy density factor So is
related to the ASTM fracture toughness Kj.:

@a-

Sc = '1#—:2 K1c2 (10)

where v is Poisson's ratio and u is the shear modulus of
elasticity.

The proposed fatigue crack growth relation has the following
form [15]:

fﬁ:B(AS)’" . (2

where B and m are two experimentally determined coefficients that
can be determined from data for rail steel such as that from
References 13 and 16. In the case of self-similar Mode I crack
extension, Ar/AN becomes A a/AN such that a single crack length
dimension a is sufficient. 1In general, Ar in Figure 14 may vary
from point to point on the crack front for each interval of load
cycle AN of growth. The crack growth constants B and m are
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related to the constants C and p in the engineering fracture
mechanics model given by equation (7) and are B = 1.096 x 10-6
inches cycle'1 (1b/in)~ and m = 2. The derivation of these
values from the crack growth constants used in the engineering
fracture mechanics model is given in Appendix C.

3.2 FINITE ELEMENT ANALYSIS

Three-dimensional finite element analysis is used to model
the rail web with an initially semi-elliptical surface crack.
The stresses in the rail web are calculated based on the usage of
20 node isoparametric elements with shape function gradients at
the Gaussian gquadrature points. The 1/r singular behavior of the
strain energy density function near the crack can be achieved by
moving the midside crack border points of the isoparametric
elements to quarterpoint positions [17,18]. In order to include
the influence of the entire rail structure loading conditions,
the finite element analysis is divided into two parts: one for a
rail section of 22 inches in length and the other for a rail
section that only includes the rail web only, (see Figure 15).
The length of 22 inches represents the distance between two ties
in a nominal track. These two different finite element analyses
will be referred to as the full rail model and the local web
model, respectively. A three-dimensional displacement
distribution is obtained from the full rail model and is then
used to simulate the applied loading for the local web model.
Symmetry about the yz-plane (recall Figure 1) is assumed.
Therefore, only one-half of the web crack is modeled. Due to the
paucity of available data on the three-dimensional state of
residual stress in the rail web, the effect of residual stress in
the strain energy density model was not included in the present
study.

In the full rail model analysis, a total of 396 nodes and 72
elements were required to model a rail segment of one tie length.
Figure 16 shows the finite element grid pattern for a 132RE rail
cross section. A single wheel loading was assumed (which was the
same assumption used in the engineering fracture mechanics
model). A vertical wheel load of 33,000 lbs. was applied at
midspan with an eccentricity of 0.75 inch. A lateral load was
also applied at the same contact point. Two values were assumed
for lateral load: 1650 lbs. corresponding to tangent track
loading and 9900 lbs. corresponding to curved track loading.
Bending moments were applied at the ends of the section to
enforce equilibrium. These end moments were calculated based on
the classical beam on elastic foundation theory using a track
foundation modulus of 2500 psi [7]

The local web model required 256 nodes and 34 elements for
the three-dimensional finite element analysis. The grid pattern
for the local web model is shown in Figure 17.
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3.3 RESULTS

Two sets of results are presented for the growth of a
surface crack on the rail web located on the field side, one set
for the crack subjected to tangent loading and the other for a
crack subjected to curved loading (with a lateral-to-vertical
load ratio of 0.30). The crack profiles for different growth
increments under the tangent loading are shown in Figure 18.
Note that for a single 33-kip wheel load, 3 million cycles are
the equivalent to 99 MGT. It is interesting to see that the
growth of the web crack is indeed non-self-similar. Furthermore,
it can be seen that the crack tends to extend primarily in the
longitudinal direction of the rail. Table 4 shows the values of
the strain energy density range and crack growth increments for
the surface crack subjected to tangent loading. Similar results
can be seen for the case of curved track loading in Figure 19.

The corresponding numerical values for Figure 19 are listed
in Table 5. The results from the SED model show that the curved
track case has a greater crack growth rate than the tangent.

This result differs from that of the engineering model which
predicted no growth for the surface crack without residual stress
under curved track loading.
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TABLE 4. RESULTS FROM SED MODEL FOR TANGENT TRACK LOADING

Crack Border AS

Points (lb/in x 1073)
1st growth increment AN = 3 x 106 cycles
1 37.6

2 10.6

3 62.7

4 58.4

5 33.3

2nd growth increment AN = 6 x 10% cycles
1 36.2

2 36.5

3 40.3

4 4.4

5 2.3

3rd growth increment AN = 6 x 106 cycles
1 38.9

2 10.6

3 7.7

4 4.6

5 0.0

33

Ar
(in.)

0.00465
0.00037
0.01293
0.01121

0.00365

0.00862
0.00876
0.01068
0.00014

0.00003

0.00995
0.00074
0.00039
0.00014

0.0
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TABLE 5. RESULTS FROM SED MODEL FOR CURVED TRACK LOADING

Crack Border AS
Points (1b/in x 1073)

1st growth increment AN = 2.25 x 106 cycles

1 42.9
2 76.7
3 76.5
4 2.2
5 2.1

2nd growth increment AN = 2.25 x 106 cycles

1 13.1
2 65.1
3 42.1
4 32.2
5 16.5

3rd growth increment AN = 2.5 x 106 cycles

1 110.8
2 90.3
3 79.6
4 ) 33.8
5 31.7

35

Ar
(in.)

0.00454
0.01451
0.01443
0.00001

0.00001

0.00042
0.01045
0.00437
0.00256

0.00067

0.01682
0.01117
0.00868
0.00157

0.00138






4. CONCLUSIONS

Two different models for determining the crack growth rate
of a surface crack on the rail web have been presented.
Although, these two models were developed under some different
assumptions, one conclusion from the results of both models can
be made: the crack growth rates are very slow; that is, to extend
a crack one-tenth of an inch in any direction requires of the
order of one thousand MGT. Therefore, detection of such cracks
before catastrophic failure occurs should be made without much
difficulty. The engineering fracture mechanics model, using only
one-dimensional data, showed that the fatigue life of the surface
crack is indeed sensitive to the level of the residual stress in
the rail web. The predicted fatigue lives for the cases
including residual stress were an order of magnitude less than
those for the case without residual stress. However, the lives
with residual stress are still relatively high (1196 MGT for the
first ten percent of growth increment in the worst case).

The strain energy density model showed that the crack growth
was non-self-similar. The crack was shown to grow primarily in
the direction along the length of the rail for both tangent and
curved track loading. The results from the curved case showed
that the lives decreased with the increase in lateral load. 1In
the case of tangent loading there is no growth in the thickness
direction after 495 MGT. The results from the engineering model
also seems to suggest that the length of the crack in the
thickness direction is limited as the extension approaches the
center of the web. The effect of residual stresses could not be
investigated in the strain energy density model due to the lack
of three-dimensional data. The study of this effect is left for
future considerations.

36






APPENDIX A

SOLUTION OF THE CONTINUOUSLY LOADED BEAM USING FOURIER SERIES

The solution to the problem of a rectangular beam loaded
continuously along the length can be found in Timoshenko and
Goodier [9]. The solution is most convenient when the applied
loading functions can be expressed in terms of a Fourier series.
In Section 2.2, the functions for the stress distributions
applied to an infinitely long beam are derived from beam on
elastic foundation theory. 1In this appendix, these functions
are transformed into series form. However, the solution in
Reference [9] 1is given for a finite length beam. According to
the beam on elastic foundation theory, a finite length beam may
be treated as an infinite beam when the following condition is
satisfied:

L >3/ (A1)
24 = zﬁ*‘r (A.2)
vy
Also, E = Young's modulus, I = area moment of inertia

for vertical bending, k = rail vertical foundation modulus. The
general form of the applied stress distributions is:

0zz = DM ( cos Ax + sin Ax ) (A.3)

This function can be approximated by finite Fourier cosine
series:

02z = Ao +§1 Am cos ( TfX) (A4)
m=

Thus, by orthogonality conditions,

L L
/ Ao dx = D/ e"\x(coskx+lin Ax) dx T (A.5)
0 0
L L
/ Amdx= D / &% ( cos Ax + sin Ax) cos (%) dx (A.6)
(1] 0

From the integral tables, the following indefinite integrals
can be found:

A-1






/e”‘ sin bx dx = a_i&-:x_bi ( a sin bx - b cos bx) (A.7)

/eax cos bx dx = 1%5 ( a cos bx + b sin bx) (A.8)

Therefore, the Fourier coefficient for m=0 can be solved as:

Ao = })E (1- e cos AL ) (A.9)

Also, from the integral tables it can be found that

/eax cos bx cos ex dx = e®* [(b-c) sin (b-¢)x + a cos (b-¢c)x ]
2[a% + (b - ¢)? ]

e®* [(b+c) sin (b+.c)x + a cos (b+c)x ]

+ e S T (A.10)

/e“ sin bx cos cx dx = e sinz([:-;)_:_( 2b(b-c§2¢t]>s (Groix

-c
e™ [a sin (b4c)x - (b+c) cos (b+c)x ]
+ ST (b 3 OF ] (A11)
Then for m > 0O,
_ e [c sin (b-c)L + (-2b+c) cos (b-c)L ]+ (2b-c)
An =5 ( 2082 + (b- o7 |
e"™ [c sin (b+¢)L - (2b+c) cos (b+c)L] + (2b+c)

+ T ot ] ) (A.12)






APPENDIX B

CONCENTRATED MOMENT APPLIED ON A CANTILEVER PLATE
OF INFINITE LENGTH

The governing differential equation from classical small
deflection theory of plates is:

V4 w(x,y) = 0 (B.1)
where 0 < x € a, - w <y < + . The solution to this equation
can be expressed as:

[ -]
w(x,y) = / f(x,a) cos ya da (B.2)
0
where f(x,a) = (A + Bx) cosh ax + (C + Dx) sinh ax and A, B, C,

and D are functions of a. The neccessary boundary conditions for
the case of a concentrated moment applied at x=a are:

w(0.y) = §¥ (0.y)=0 (B.3)
- N (azw + v 0:_\%1 ) / 2%5%“6 cos ay da (B.4)
X
y rX=a
= 83w
2 B.5
(8x (247 5y ) (B-5)

X=a

3
N= 1200 — 12) (B-6)

Then, the moment, My at any location in the plate is
determined from

Mx=-N/(;Lig-azv;L;¥)cosayda (B.7)

The following changes in variables are introduced: a = &/ ¢ =
a

X, and n = ¥. Then, after a considerable amount of algebra,
a a

the moment at any normalized location in the plate is

B-1






Mx='¥—

X)) cos un du (B.8)

{o]
<
—~
L
-~
N’

Y(8) = - [ W2€ + (7+1)? ] cosh pé cosh p - [ v + E(7+1) ] sinh € coshp

+ # €7 + (v+1) ] cosh u€ sinh p + [42€ + 42 ] sinh pé sinh p (B.9)
AW =p? + 7 + (27 + 1) cosh® (B.10)

y= {1 (B.11)
Recall that p is a complex number, i.e., Bkn = an +1 8.

These real and imaginary roots are given in Reference 10. Then
by the residue theorem,

% = -Re ( : f: residue (pn)) (B.12)
n=1]1






APPENDIX C

DERIVATION OF CRACK GROWTH CONSTANTS FOR THE STRAIN ENERGY
DENSITY MODEL

From Section 3.1, the strain energy density function is
given by:

(9)

%=
!
1A

The strain energy density factor S is related to the stress
intensity factor K by:

1-2
S=(—T:)K2 (10)

where Vis Poisson's ratio and p is the shear modulus of
elasticity. 1In terms of differences, this equation becomes:

1-2 '
AS = : 4llu'u) (Kmax? - Kminz) (C.1)
Km = (Kpax + Kpin)/2 then equation (C.1) becomes:
as = UL 2) e Ak (C.2)

where E is the modulus of elasticity. Now, recall from the two
parameter 4 K model:

e =c(aK )P (c.3)

from which it is implied that Kpj, = 0 and K; = 0.5 AK and
equation (C.2) becomes:

as = 13001 -2) k2 (C4)

C-1






The strain energy density model uses a crack growth relation
of the following form:

ﬁ:B(AS m (12)

In the case of self-similar Mode I crack extension, Ar/AN
becomes Aa/ N such that a single crack length dimension a is
sufficient. Thus, substituting equation (C.4) into equation (12)
and equating with equation (C.3) results in:

C(AK)":B(@%L"’L)AW)"‘ (C.5)

g

Upon comparison of both sides of this equation, the
following relations are obtained:

m = p/2 (C.6)
B=C( ey )" (C.7)

The crack growth constants from the AK model as reported in
Reference 13 are C = 1 x 10711 in. cyc.”! (ksi/in)~P and p = 4.
Assuming that E = 27.4 x 103 ksi and v= 0.3, equations (C.é6)
and (C.7) give B = 1.096 in. cyc.”l (1000 lb/in)™™ and m = 2.
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